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Moving contact lines and rivulet instabilities. 
Part 1. The static rivulet 
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A rivulet is a narrow stream of liquid located on a solid surface and sharing a cnrve'd 
interface with the surrounding gas. Capillary instabilities are investigated by a 
linearized stability theory. The formulation is for small, static rivulets whose contact 
(common or three-phase) lines (i) are fixed, (ii) move but have fixed contact angles 
or (iii) move but have contact angles smooth functions of contact-line speeds. The 
linearized stability equations are converted to a disturbance kinetic-energy balance 
showing that the disturbance response exactly satisfies a damped linear harmonic- 
oscillator equation. The ' damping coefficient ' contains the bulk viscous dissipation, 
the effect of slip along the solid and all dynamic effects that arise in contact-line con- 
dition (iii). The 'spring constant', whose sign determines stability or instability in 
the system, incorporates the interfacial area changes and is identical in cases (ii) and 
(iii). Thus, for small disturbances changes in contact angle with contact-line speed 
constitute a purely dissipative process. All the above results are independent of slip 
model a t  the liquid-solid interface as long as a certain integral inequality holds. Finally, 
sufficient conditions for stability are obtained in all cases (i), (ii) and (iii). 

1. Introduction 
A rivulet is a narrow stream of liquid flowing along a solid surface and sharing an 

interface with the surrounding fluid. The flow within the rivulet is driven by the 
component of gravity along the solid surface as shown in figure 1. Rivulets are often 
seen on automobile windshields and on the walls of showers. They are frequently 
formed when uniform films break-up and during condensat,ion processes. Although the 
rivulet flow-r6gime should strongly effect the heatlmass transport in these systems, 
no stability conditions or criteria are available. 

Rivulets display a large variety of intriguing instability phenomena. Kern (1969, 
197 1 ) sees the break-up of rivulets into droplets, rivulet-meandering and the transition 
of rivulet flows from laminar to  turbulent rhgimes. Large-amplitude surface waves are 
apparent in many situat,ions. Our own preliminary experiments (Culkin 1979) show 
these plus other more intricate phenomena. Droplet formation is presumably due to 
capillary instability (Rayleigh 1879) where the surface tension on the liquid-air inter- 
face causes capillary pressure gradients that enhance small interfacial corrugations. 
Here, however, the liquid-solid interaction modifies the process. This mechanism is the 
object of the present study. 

The feature of rivulets that makes them most interesting and also so difficult to 
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FIGURE 1. Sketch of a rivulet: (a) side view, (b) plan view, (c )  front view. 

analyse is the existence of their contact lines. A contact (or common or three-phase) 
line is a geometric curve formed when an interface between two immiscible fluids 
intersects a soIid. The rivulet sketched in figure 1 shows two such lines. Even casual 
observation shows that owing to instability processes, the contact lines seem to move. 
The boundary conditions a t  moving contact-lines can be quite complicated. For 
example, Dussan V. & Davis (1974) have shown, using only the kinematics of the 
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motion of moving contact-lines, that the usual no-slip condition applied everywhere 
on the wetted solid leads to a fluid dynamical model having infinite force near the 
contact line. If the local details of the flow are important, this is clearly unsatisfactory. 
An effective slip condition on the solid near the contact line will relieve the difficulty. 
This route has been used with success in several analyses involving mutual displace- 
ment of one viscous fluid by another (Dussan V. 1976; Hocking 1977; Huh & Mason 
1977). These areas have been ably reviewed by Dussan V. (1979a).  

The rivulet can thus be seen to have inherent fluid dynamical interest. It possesses 
free boundaries and moving contact lines, and it displays a large variety of instability 
phenomena. Furthermore, i t  can play the role of a vehicle for the study of moving- 
contact-line boundary conditions ; by assessing their effects on the gross instability 
characteristics of the system, one might be able to infer those conditions 
appropriate to a given set of materials. 

In the present work we begin such studies by focusing on the simplest possible 
rivulet. We examine a static rivulet (on a horizontal plate) that is so small that gravity 
effects can be ignored. There are two general methods for examining the stability of 
static states. On one hand one can use a thermostatic approach (Gibbs 1948); the state 
is stable if it  is the minimum of an energy functional subject to appropriate constraints. 
The energy of the system consists of the gravitational potential, the interfacial energy 
on the fluid-fluid interface (surface tension times surface area) plus further energies, 
if any, attributable to the solid-fluid interface. The above defines a variational 
principal, the first variation of which yields the equilibria of the system. It is by 
consideration of the second variation that stability properties of such equilibria are 
obtained. Such analyses are often extremely complicated though certain cases of 
static rivulets have been analysed by Michael & Williams (1977). 

The second approach to stability of static states is the usual hydrodynamic theory, 
say, for small disturbances. Here, the full dynamical system is analysed and conditions 
for stability or instability obtained. Dussan V. (1975) has shown using the hydro- 
dynamic theory that in certain cases the thermostatic theory can be recovered and 
hence, the two can be equivalent. In certain cases the former is simpler to use while 
in other cases the latter can be simpler. However, when moving contact lines are 
present and the contact-line boundary conditions are dynamic in nature, then the 
thermostatic approach is inapplicable; the dynamic approach is the only alternative 
available. 

In the present work we pose the linearized hydrodynamic stability theory for static 
rivulets. We consider several different cases of contact-line conditions. There are (i) 
fixed contact lines, (ii) fixed contact angles, (iii) contact angles that vary smoothly 
with contact-line speeds and (iv) contact angles that display hysteresis. In cases (ii), 
(iii) and (iv), slip between the liquid and the solid is allowed since in these cases the 
contact lines move when disturbed. The linear stability equations are then manipn- 
lated, incorporating the above contact-line conditions, to form a balance equation 
for the kinetic energy of the small disturbances. The result shows that small disturb- 
ances behave exactly as a damped linear harmonic oscillator. The disturbance kinetic 
energy plays the role of the mass and the effective viscous dissipation Oe plays 
the role of the damping coefficient. It is a combination I of changets in liquid-gas 
interfacial area and changes in fluid-solid interfacial area that plays the role of the 
spring constant. Stability is achieved when the coefficient I is positive. I n  case (i), 

8-2 



228 S .  H .  Davis 

is the viscous dissipation. In  case (ii) Qe is the viscous dissipation modified by 
the slip behaviour on the solid; I is unaffected by the slip. In  case (iii), which involves 
a dynamic contact line condition, @, includes the dissipation, the slip along the solid 
plus the dynamic response of the contact line. The dynamic contact-line condition 
(iii) yields precisely the identical value of I that the fixed contact-angle condition 
(ii) does. Thus, the stability conditions for the two cases are identical. More import- 
antly, this anaIysis shows that for small disturbances the dynamical effect of the 
contact angle varying with contact-line speed is a purely dissipative process. Finally, 
sufficient conditions for stability in all cases (i), (ii) and (iii) are obtained. Results 
are compared with the thermostatic analysis of Michael & Williams (1977). The 
case (iv) of contact-angle hysteresis is discussed and shown to be outside the realm of 
a linear stability theory. 

2. Formulation 
A long, smooth flat plate is inclined a t  an angle p to the horizontal. A narrow 

stream of liquid, a rivulet, flows down the plane as shown in figure 1.  This Newtonian 
liquid has constant density p and constant viscosity p. The flow is driven by the 
component g sin p of gravity along the plate and the system is isothermal. The sur- 
rounding fluid is a passive gas that applies a constant atmospheric pressure on the 
liquid-gas interface. 

The governing equations for this system are the Navier-Stokes equations and the 
equation of continuity: 

p(Ot+6.V6)  = V.&+p@ (2 . la)  
and 

V . 6  = 0, (2 . lb)  

where 8 is the velocity vector (a, 0 ,  a), 8 is the stress tensor, 

( 2 . 1 4  

& = VG+ (V6)T, ( 2 . l d )  

h 
Q = -r;l+p&, 

and F is the body force per unit mass due to gravity, 

F = g(sinp, - cosp, 0). (2 .1e )  

The superscript T denotes transpose. 
Equations (2.1) are referred to a right-handed Cartesian co-ordinate system, shown 

in figure 1 ,  whose x axis points down the plate and whose y axis points normal to the 
plate into the liquid. The origin of the coordinate system is defined in § 3; it is a distance 
A from the plate. 

The boundary conditions appropriate to the liquid-gas interface, at  tj = @(a, 2, i), 

( 2 . 2 ~ )  
are the kinematic condition, 

and the stress jump appropriate to an uncontaminated interface having constant 

a = @+ a@$+ sq; 

( 2 . 2 b )  surface tension T, [aii]fij = 2Tfi,/R,. 

Here f i j  is the unit outward normal vector to the interface. 

fii = (-@;> 1, -q2)/ ' (1+@8++#)' ,  ( 2 . 2 4  
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and R, is the mean radius of curvature of the surface, 

( 2 . 2 d )  

The geometric curves of intersection between the interface and the plate are called 
contact lines. As shown in figure 1,  these are located a t  '2 = aK(2,t") and 2 = hZL(2,t"). 
These positions are a priori unknown. (This is a free-boundary problem.) I n  order to 
complete the formulation of the flow problem, it is necessary to pose conditions on the 
motion of these lines. 

The first statement is the condition of contact: There is a line along which the liquid 
thickness is zero, 

9 = A a t  8 = &,,'2, for all 2,%, ( 2 . 3 ~ )  

The second statement concerns the contact angle a ;  the slope of the interface a t  the 

h 

contact line in the direction normal to the contact line is the tangent of a, 

V 9 . v  = T t ana ,  ( 2 . 3 b )  

where v is the unit outward vector along the solid and normal to the contact line. The 
refer to the pair of contact lines in question, respectively for + and - values 

'2 = '2, and '2,. 
Before these two conditions can be converted into usable boundary conditions, 

they must be augmented by an ansatz that distinguishes one set of materials from 
another. This ansatz is ultimately dependent upon experimental observation. Among 
the possibilities are the following: 

(i) Fixed contact line. The contact line does not move, its position remaining invariant 
for all time. Hence, 8, and 8, are time independent. 

(ii) Fixed contact angle. The contact angle a does not differ from its static value a, 
for all time. Here it is presumed that a. is unique though this is a reasonable assumption 
in only few cases. See Dussan V. ( 1 9 7 9 ~ )  for a discussion. 

(iii) Smooth contact-angle variation. The contact angle a depends smoothly on the 
variables of the motion. For example, a = G(ucL) where ucL is the speed of the 
contact line along the plate and G'(ucL) exists always. The smoothness here excludes 
contact-angle hysteresis. 

(iv) Contact-angle hysteresis. The contact angle depends on the motion but also on 
the history of the motion. For example, CL = G(ucL)  is discontinuous a t  ucL = 0 as 
shown in figure 2. Such measurements are available for the apparent contact angle 
while i t  is widely believed that the actual contact angle a displays similar behaviour. 
See Dussan V. ( 1  979a) for a discussion. 

Finally, there is a boundary condition on the wetted solid. For the case (i) of a 
fixed contact line, there is the classical no-slip condition : 

8 = o on 0 = A ,  8L < ?  ~ ' 2 , ~ .  (2.4) 

However, when the contact line can move as it would in cases (ii), (iii) and (iv), Dussan 
V. & Davis (1974) have shown on the basis of the kinematics that a non-integrable 
singularity a t  the contact line exists as long as the no-slip condition is enforced. Hence, 
we allow efjective slip near each contact line. We shall use a slip model that  gives the 
slip velocity as a linear function of the shear stress exerted by the liquid on the solid. 
This slippage applies in cases (ii), (iii) and (iv). 
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FIUvRE 2. Sketch of experimental results of contact angle u vs. contact-line speed UCL. UCL > 0 
denotes liquid displacing gas; UCL < 0 denotes gas displacing liquid. 

3. The basic static state 

of a steady, fully developed flow that wets the plate on a strip of constant width, 
One solution (Towell & Rothfeld 1966) for rivulets on long smooth plates consists 

- L  < 9 < L. 

The corresponding interfacial shape is likewise x independent. 
The static basic state we wish to consider is obtained by taking the /3+ 0 limit of the 

Towell & Rothfeld solution. This rivulet on a horizontal plate is further considered so 
small that the Bond number pghi/T < 1 where h, is the maximum thickness of the 
rivulet. The resulting static (zero velocity) rivulet has a constant pressure and the 
interface takes the form of a cylindrical meniscus whose cross-section is the arc of a 
circle of radius R,. 

It is convenient to use cylindrical co-ordinates (2, P, 8) with the origin at the centre 
of curvature of the meniscus. The undisturbed interface then lies a t  P = R,. We scale 
as follows: 

(3.1) 

length+ R,, speed+E = (TIPRO)&, pressure-+T/R,, time-+R,/V,. (3.2) 

The cylindrical co-ordinates (x, r ,  8) are given by z = r cos 8, y = r sin 8 as shown in 
figure 3 for a case when the static contact angle uo is less than in. 

In  non-dimensional form, the basic state satisfies I ,  = 1, 9 = 0, and the meniscus 
given by 

Note that a, + 8, = 4n. 
r 1, 8, < 8 < n-e,,. (3.3) 

4. The disturbance equations 
Disturbances to the basic state are introduced as follows: 

v = O+sv’, 

P = p + e p P ’ ,  
- 

where e is a measure of disturbance amplitude. The interface lies a t  

r = l+sh’ 

( 4 . 1 ~ )  

(4.lb) 

( 4 . 1 ~ )  
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and the contact lines lie at 
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(4.ld) 

where zo = cos 6,. The contact angle is given by 

a = ao+€a' 

which corresponds to O,, = 8, + €0' or 7r - 8, - €8'. 
If forms (4.1) are substituted into the non-dimensional form of (2.1)-(2.4), and 

linearized in disturbance quantities, the linearized disturbance equation result at  
order e.  These equations can then be expressed in terms of normal modes 

exp ( at + ikx) . 
The result is as follows: 

where 

0-v' = v . a', (4.3a) 

v .v' = 0, (4.3b) 

v'.N = ah', r = 1, (4.36) 

a'.N = { ( l -k2)h'+h; ls }N,  r = 1, (4.34 

&-eei.a'.N=~v.ei, i =  1,3, y = A ,  (4-3f 1 

(4.3g) 

v '= 0, y = A, (4.3e) 

0' = -#I+ (pV,/T) 8'. 

System (4.3) must be augmented by contact-line conditions. Here we have used the 
same symbols to denote the full, linearized unknown as its corresponding normal- 
mode amplitude. N is the unit outward normal to the basic-state interface and 
e(*) = (1, 0, 0), e(2) = (0,1, O), e(3) = (0, 0, 1) are the Cartesian unit vectors. 

Equation ( 4 . 3 ~ )  is the momentum balance and (4.3b) is the continuity equation. 
Forms (4.3c, d )  are the kinematic and stress conditions on the interface which apply 
on the undisturbed position r = 1. Equations (4.3e, f )  constitute the boundary 
conditions on the wetted plate located at  y = A. There is no cross-flow through the 
plate and along the plate the local slip velocity is proportional to the local shear 
stress. The slip coefficient is ,8. Within the linearization the directions in the plate 
tangent and normal to the contact line are respectively given byey) andei3). Corrections 
in these directions are O(e2). Conditions (4.38, h) are the conditions of contact and 
contact angle. Each apply on the undisturbed contact lines at 6 = 6,, T-0, .  The 
latter condition within the order of the linearization refers to the contact angle 
projected on the y, z plane. Again the error incurred in this simplification is 0(c2) .  

5. Contact-line boundary conditions 
In order to make the disturbance equations well-posed, boundary conditions at  the 

contact lines are required. 
In its disturbed state a rivulet has contact lines that are not straight lines but are 

corrugated curves that can move normal to themselves. It is in the normal directions 
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FIGURE 3. Sketch of cross-section of undisturbed and disturbed rivulet illustrating the cylin- 
drical co-ordinate system (2, r ,  8). The origin is the centre of curvature of the undisturbed 
meniscus. 

that one defines planes that contain the contact angles. These normal directions can 
be taken as the z direction and the contact angles defined in the projected plane, the 
y, z plane. The error incurred is O($) and is therefore negligible according to linear 
stability theory. The projected plane is shown in figure 3. 

In  what follows we concentrate on the contact line near z = xo, y = A. (The results 
for the line near z = -zo,  y = A will merely be stated.) For convenience, we shall use 
a mixed notation, sometimes referring to (x, r ,  8 )  and sometimes to (x, y, z) .  Hence, 
the contact line near z = z,, y = A is equivalently near r = 1,8 = 8,. 

In order to define the interfacial slope (and hence the contact angle) a t  the contact 
line, we write a (Cartesian) position vector R to the disturbed interface at 

= qz,e , t )  = i+v(z,o,t) 
as follows: R = (x, h sin 8, h cos 8).  A vector tangent to the interface (in the projected 
plane) is R, = (0, h, sin 8 + h cos 8, h, cos 8 - h sin 8) .  The slope of the interface a t  the 
contact line defines the contact angle: 

= - tan (01, +mi). 
hecos8-hsin8 ll-A 

he sin 8 + h cos 8 

a=& + ez; 1 
We also have two geometrical relations that are obvious from figure 3: 

and 
(z, + ~2;)' + A' = (1  + &')' 

A 
tan (Oo+&,) = - 

2, + €2; - 
If relations (5.1) are expanded in powers of 8, we obtain a t  O( 1):  

cot 8, = tan ao, 

( 5 . 1 ~ )  

(5.lb) 

(5 .1~ )  

( 5 . 2 ~ )  
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# + A 2  = 1, (5.2b) 

tan8, = A/zo. ( 5 . 2 ~ )  

These are the relationships appropriate in the basic state. Equations (5.1) give at  
O(E)  the following forms that apply at y = A, z = z,: 

h; - 0; = a;, (5.3u) 

Z, 2; = h’, (5.3b) 

(5.3c) 

Equations (5.2) and (5.3) can be manipulated to yield the desired relation for h’: 

where 
h;+Sh’ = a;, T = 1, O = 8, 

X = cot a,. 

( 5 . 4 ~ )  

(5.4b) 

If a similar analysis to the above is applied to the contact line near r = 1 , O  = n - So, 
the result is as follows: 

hA-Sh’ = a;, r = 1, 8 = n-8,. (5.5) 

We can now turn to the cases outlined in 5 2. 

Case I .  Fixed contact lines 

The appropriate contact-line boundary condition results from the condition z; = 0 
and equation (5.3b)) 

h’(x,O,,t) = 0 for all x,t ( 5 . 6 ~ )  
and 

h’(x, n - 8,, t )  = 0 for all x ,  t. (5.6b) 

The normal-mode equivalent of these is clear. The boundary-value problem then gives 
hi at each contact line and the dynamic contact angle is obtained through ( 5 . 3 ~ )  and 
(5.3c). 

Case I I .  Fixed contact angle 

The appropriate contact-line boundary condition results from condition a; = 0 and 
(5.4) and (5.5), 

hi+Sh’ = 0, 8 = 8,(r = 1 )  for all x , t  ( 5 . 7 ~ )  

hi-Sh’ = 0, 8 = n-O,(r = 1)  for all x , t  (5.7b) 
where 

s = cot a,. (5.7c) 

The normal-mode equivalent of these is clear. The boundary-value problem then 
gives h’ from which (5.3a, b )  determine z; and a; and hence the contact-line position 
and the contact angle. 

Case I I I .  Xmooth contact-angle variation 

If it is assumed that the instantaneous contact angle depends smoothly on the contact 
angle speed, then 

a,+~a; = G(O+eiA), (5-8) 
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where the dot denotes the time derivative and the derivative G’ exists and is con- 
tinuous everywhere. By expanding (5.8) in powers of e,  we have a t  O( 1): 

a. = G(0) .  (5.9) 

Here a. is the (unique) static contact angle, the uniqueness resulting from the form 
(5.8) assumed. Equation (5.8) yields a t  O ( E ) :  

where 
a; = G,i$, 

G, = G’(0). 

We can combine (5.10) with (5 .3b )  to obtain 

= G,?c(/z0 

= G, (cosec a,) hi 
so that ( 5 . 4 ~ )  takes the form: 

( 5 . 1 0 ~ )  

(5.10b) 

(5.11) 

hi + Sh’ = G,(cosec a,) hi for all x, t. (5.12) 

Finally, if we introduce the normal-mode decomposition (4.2), the appropriate 
contact-line boundary conditions take the form 

h;+(S-Pv)h’  = 0, 8 = 8,(r = I ) ,  ( 5 . 1 3 ~ )  

where 

and 

h i - (S -Pg)h ’  = 0, 8 = ~-f?,,(r = I) ,  

s = cot a, 

P = G, cosec a,. 

(5.13 b )  

(5.1%) 

(5.13d) 

The boundary-va.lue problem determines h,‘ and hi a t  the contact line and the contact 
angle are determined through equation (5.11). 

Case I V .  Contact-angle hysteresis 
Contact angle hysteresis is illustrated in figure 2 and corresponds to (5.8) where 
G’(0) does not exist. Hence, where contact-angle hysteresis is present the functional 
G is inherently non-linearizable. If such a boundary condition as (5.8) were used, then 
a system having contact angle hysteresis could not be analysed using a linear stability 
theory.? 

6. The energy equation 
We shall obtain stability results from an energy-like integral form of the disturbance 

equations (4.3). To form this, we first define three integrals. A ‘volume’ integral of a 

quantity Q(r, 8) is denoted by 

t See note added in proof. 
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An integral of a quantity Q(r )  6 )  is denoted by 

Q = In-” Q( 1) 0) d6. 
e=eo 

” 
A ‘surface’ integral of a quantity Q(r )  6 )  is denoted by Q )  

J S  

ISQ = 1’’ Q(r70)Iy=adz.  
z =  -20  

The ‘energy’ integral is obtained by taking the dot product of (4 .3a)  with the 
complex conjugate v’* of v’ and taking the volume integral. We obtain 

where we have used the divergence theorem. The boundary W” of V consists of two 
parts. There is the interface r = 1,0, < 0 < 7~ - 8,, on which n = N and (4.3c,  d )  apply. 
There is the wetted solid S a t  y = A on which n = -e(2) and (4.3e) apply. If these 
are used, equation (6 .1)  becomes 

If we now use condition ( 4 . 3 f )  on y = A, we can transform (6.2) into the following 
form 

crE+cD+I, = 0’ (6 .3a)  
where 

E = IY lv’I2 (6.3b) 

is the positive definite disturbance kinetic-energy and 

is the eflective disturbance viscous dissipation. It is gratifying to see that effective 
slip of the liquid over the solid appears as a modification of the bulk dissipation. If  
p > 0,  is positive definite. Even if /3 could be negative somewhere, one would expect 
the bulk integral to dominate over the surface integral (/PI is very small). We shall 
assumet that CD > 0. The interfacial integral I ,  is given by 

1, = ((k2- l)h‘-h&Jv’*.N. (G.3d) 

On the interface, equation (4 .3c) ,  the kinematic condition allows us to transform (6.3) 
into the following form: 

crZE+(TQ)+I = 0) (6 .4a)  
where 

I1 

(6.4b) 

v’.a’.n < 0, which is a condition that is s t This assumption is no more than 
aolid 

independent of slip-model. 
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and 
$ = v’(1,0).N ( 6 . 4 ~ )  

is the interfacial normal speed. To obtain (6 .4)  we have used integration by parts 
on the term $*&. Equations (6 .4 )  are the sought after form of the ‘energy’ balance. 

7. Sufficient conditions for stability 
The ‘energy’ balance equation, (6 .4) ,  allows us to pose a sufficient condition for 

stability. 

Theorem: A static rivulet is stable (i.e. has only decaying normal modes) to in- 
finitesimal disturbances when the function I ,  given in equation (6 .4b) ,  is positive. 

This theorem is proved by solving the quadratic equation ( 6 . 4 ~ )  and examining 
the discriminant. The value of the functional I depends on the contact-line boundary 
conditions and so we must examine cases, one for each type of boundary condition 
posed. 

Case I .  Fixed contact lines 

For fixed contact lines, equations (5 .6)  give 

h ’ =  0,  8 =  B0, n-8, 

from which, together with (4 .3b )  and (6 .4c) ,  it  follows that 

$ = 0, B =  B,, n-8,. (7.1) 

Lemma 1. For all smooth enough functions $ that satisfy conditions (7 .1 ) ,  there 
exists a positive number t2 such that 

The largest such number is given by 

( 7 . 2 ~ )  

(7 .2b)  

This is an elementary result from the calculus of variations (see Courant & Hilbert 
1953, chap. IV). In  forming ( 7 . l b )  we have used the result that ao+Bo = &r, which 
follows from (5.2 a) .  

Owing to conditions (7 .1 ) ,  the boundary terms in I vanish. Furthermore, the use of 
inequality (7 .2 )  gives 

Hence, linearized stability is guaranteed if 

k2 2 1-5’. (7 .4)  

The range of possible instabilities vanishes if 1 - t2 < 0 so that there is linearized 
stability for all k when 

a. < in. (7.5) 
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FIGURE 4. Calculated value of the isoperimetric constant 6 of system (7 .7) .  

Case I I .  Fixed contact angles 

Lemma 2. For all smooth enough functions #, there exists a number 6 such that 

This inequality is obtained from a calculus of variations problem whose Euler- 
Lagrange equations are as follows: 

#eo + C4 = 0, (7.7a) 

#e+S# = 0, O = O,, (7.7b) 

#e-S# = 0, 8 = IT--,. (7.7c) 

with S = cot a,,. Figure 4 shows how the smallest cdepends on a,. 

forms (7 .7  b )  and (7.7 c) apply. Using these, the functional I becomes 
For fixed apparent contact angles, equations (5.7), (4.3b) and ( 6 . 4 ~ )  show that 

If we use inequality (7.6), we obtain 

Linearized stability follows for 

k2 > 1 - 6. 

(7.9) 

(7.10) 
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Case I I I .  Smooth contact-angle variation 

When the contact angle is a smooth function of contact-angle speed, the conditions 
(5.13) apply. In  this case the boundary terms in I can be transformed as follows: 

r # * h ~ ~ ~  = (s -P~) { I# (~-~ , ) I~+  lw’,)121. (7.11) 

If we now apply this result to (6.4a), we can redefine the effective dissipation ae to be 

@e = @ + P{ I #(m - 60) I + I &o,) I ‘1 (7.12) 

and the effective surface term I, to be 

Here ae is positive definite, the smooth contact-angle variation further modifying the 
‘viscous dissipation’. The new ‘energy’ equation has the new form 

U~E+U@‘,+I, = 0 (7.14) 

so that again stability is assured as long as 

I, > 0. (7.15) 

Condition (7.15) is precisely the same as that of case 11, condition (7. lo), so that the 
stability condition is the same as well. The modified dissipation merely affects the 
growth or decay rates of the modes, not the interval of stability. 

Case I V .  Contact-angle hysteresis 

When contact-angle hysteresis is present, G of equation (5.8) is not smooth SO that 
linearization is impossible. With the present formulation, equation (5.8), of this 
boundary condition only a nonlinear stability-theory is applicab1e.t 

8. Discussion 
Before we discuss the rivulet-stability results already obtained, let us reconsider 

the stability of a static, circular cylinder of liquid using our energy-integral technique. 
This capillary jet is equivalent to a rivulet with 8, = --in or a, = n and without 
liquid-solid contact. In  this case all dependent variables, and in particular 4, are 
21r-periodic in 8 so that the boundary terms in I sum to zero. Furthermore, since 4 
is 2n-periodic in 8, # satisfies 

with 
5 =  0. 

Thus, we have for the capillary jet 

( 8 . 1 ~ )  

(8.1b) 

t See note added in proof. 
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FIGURE 5 .  Predicted region (shaded) of stability, relation (7.4), for 
the static rivulet hrtving fixed contact lines. 

Linearized stability is thus assured if 

k >  1. (8.3) 
Condition (8.3) is identical to the result of Rayleigh (1879), who derived this con- 
dition as both necessary and suficient for stability when the liquid is inviscid. The 
only modes that can lead to instability are the axisymmetric ones. (This corresponds 
in our notation to [ = 0 and the equality in form (8.1a).) Non-axisymmetric modes 
cannot grow. When the fluid is (Newtonian) viscous, the same ranges correspond to 
unstable (0 < k < 1 )  and stable (k > 1 )  modes (see e.g. Chandrasekhar 1961); the 
viscosity affects the magnitudes of the growth rates. We thus see that our bounding 
technique, when applied to the capillary jet, gives the optimal range of stability. 

Let us now consider rivulets having contact lines that are $xed. We first examine a 
circular cylinder of viscous liquid whose only contact is with a thin, solid wire that 
touches the cylinder along a generator. In our notation this corresponds to 0, = - in 
or a0 = 7r. Equations (7.2b) and (7.4) give a region of certain stability, k2 > Q ,  in 
contrast to the stability condition, k2 > 1 ,  for the case of the same cylinder without 
contact. The single fixed line of contact gives a substantial stabilization. In  mathe- 
matical terms, the stabilization occurs because the fixed contact lines forbid there 
being a purely axisymmetric disturbance to the rivulet interface since all interfacial 
disturbances, to be admissible competitors, must satisfy the contact-line conditions. 

Dussan V. (19793) has examined this stability problem using an alternative mini- 
mum energy formulation (Dussan V. 1975) derived from the dynamics. She is able to 
obt.ain k2 > Q as the necessary and suficient condition for static stability. Again, our 
simple bounding technique gives the optimal range of stability. 

We now return to the consideration of rivulets per se. When the contact lines are 
$xed, equations (7.2b) and (7.4) give a region of certain stability. Figure 5 shows this 
region as a function of the contact angle a,. When a. < 471, the rivulet is stable; when 

< a, < n, the rivulet is stable for large enough k. There is a dramatic effect shown 
here due to the liquid-solid contact and the conditions of fixed contact lines. When 
uo < jn, the rivulet is unconditionally stable to small disturbances. The corresponding 
capillary jet is unconditionally unstable (since general disturbances must contain 
wavenumbers in the range ( 0 , l ) ) .  We can also consider the case a0 = n which corres- 
ponds to a full, circular cylinder of liquid placed on the solid plate with only a single 
line, a generator, touching the solid. Our results here, that there is stability for k2 > Q ,  
is identical with that for the case discussed above in which the cylinder contacts a 
wire. In that case k2 > 2 was both necessary and sufficient for stability. Here, the 
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FIGURE 6. Sketch of the undisturbed and disturbed meniscus for the case of a, = 7r and a fixed 
contact line (a) for liquid contacting a wire, ( b )  for liquid contacting a plate. The above inter- 
facial expansion due to disturbance occurs for half of each wavelength 2n/k while in the other 
half wavelength the interface contracts. 

condition is certainly sufficient but may not be necessary.? To see this we note that 
the minimizing function $M of relation (7 .2n)  is $M = sin g(e+ in). The corresponding 
admissible interfacial-position disturbance is proportional to & through equation 
( 4 . 3 ~ ) .  It is easy to see by plotting t,he distorted interface shape that the maximizing 
function corresponds to the interface crossing the line y = A. As shown in figure 6(a )  
for the wire case, this is dynamically allowable. However, as shown in figure 6 ( b )  in 
the plate case, this corresponds to liquid mass penetrating the solid plate. Since this 
is not dynamically allowable, the suficient condition k2 > 2 for stability is probably 
not a necessary condition as well. 

All of the above cases involve fixed contact lines so that they are in the realm of the 
thermostatic theory of Michael & Williams (1 977). They consider a rivulet on a solid 
strip of fixed width 2L whose contact lines are fixed on the corners. They find for their 
fixed-volume case instabilities of the type discussed here but it is difficult to interpret 
their results in terms of the present parameters. (They scale lengths on the capillary 

t This observation and the subsequent argument are due to Prof. E. B. Dussan V. 
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FIGURE 7 .  Predicted region (shaded) of stability, relation (7.10),  for the static rivulet having 
either fixed contact angle or contact angle a smooth function of contact-line speed. 

1 

length (Tlpg): so that i t  is difficult to take the limit g+O and they do not present 
their results in terms of contact angle.) 

When the contact angle i s f ixed ,  equation (7.10) and figure 4 give a region of certain 
stability. Figure 7 shows this region as a function of the contact angle ao. For all 
a. the region of certain stability fails to encompass all possible axial wavenumbers k; 
there is always a non-zero cut-off value. Again, the case a0 = T provides an interesting 
example of liquid-solid-interaction effects. We see that in this case, a circular capillary 
jet making contact with the solid along one generator, is stable in a range k < 1 where 
the capillary jet would be unstable. Michael & Williams (1977) claim in this case that 
their thermostatic theory for the fixed-volume case would give stability for all ao. 

When there is smooth contact-angle variation, the thermostatic theory is inapplicable. 
Our bounding technique gives the same range of certain stability as that  in figure 7. 
All variations in the contact-angle lead to modifications in the effective viscous 
dissipation and hence to modifications in the growth rates. 

No results have been obtained for a system that displays contact-angle hysteresis. 
According to the formulation in equation (5.8), this phenomenon, although physically 
common, is outside the realm of linear stability theory.? 

9. Conclusions 
I n  the present work we have formulated the linearized stability theory of small, 

static rivulets. Three types of contact-line conditions have been defined, the con- 
ditions being posed in terms of the perturbation h' in the free-surface position. (i) 
When a contact line isJixed, h' = 0. (ii) When a contact angle is  fixed, there is a mixed 
condition (5.7) in which a linear combination of h' and its spatial derivative vanishes. 
(iii) When there is smooth variation of the contact angle, there is a time-dependent 
condition (5.12) in which a linear combination of h', its spatial derivative and its time 
derivative vanishes. 

The linearized stability equations and boundary conditions are converted into a 
balance equation for kinetic energy. The disturbance response is given exactly by a 
damped linear harmonic-oscillator whose disturbance kinetic energy corresponds to  
the mass, whose effective dissipation Oe corresponds to  the damping coefficient and 
whose interfacial area changes I corresponds to the spring constant. Oe contains the 
bulk viscous dissipation, the effect of slip (in cases (ii) and (iii)) and the dynamic 

t See note added in proof. 
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response of the contact-angle variations with speed (case (iii)). The result is independent 
of slip model as long as 

v'.a'.n < 0. s solid 

This formulation shows that smooth variations in contact angle with contact-line 
speed constitutes a purely dissipative process since this effect contributes to ae only 
while leaving I unchanged. The sign of I determines stability (I > 0 )  or instability 

Sufficient conditions for stability are obtained in various cases of (i), (ii) and (iii) 
using bounding techniques. These offer easily accessible results in cases (i) and (ii) 
when a thermostatic theory would apply, as well as in case (iii) when the thermostatic 
formulation is inapplicable. Since I for cases (ii) and (iii) are identical, the stability 
criteria in these two cases are identical. These stability results in terms of the contact- 
line conditions are a first step toward a general understanding of the effects of contact- 
line dynamics upon the gross stability behaviour of interfacial systems. 

(I < 0). 

~ _- 
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Note added in proof (2 January 1980) 
If one thinks of the relation a: = G(u,,) of figure 2 as being represented as the 

limit of a sequence of steeper and steeper smooth curves having G'(0) + co, then the 
stability result of case I11 would apply to the contact-angle hysteresis case IV  as 
well. No direct analysis of this case exists, though. 
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